Disusun Oleh: INDRAYANI, M.Ak.

MODUL

FAKULTAS EKONOMI DAN BISNIS ISLAM INSTITUT AGAMA ISLAM NEGERI PAREPARE

KATA PENGANTAR

Segala puji syukur kepada Tuhan Yang Maha Esa karena berkat rahmatNya penulisan modul Mata Kuliah Praktikum SPSS dapat terselesaikan dengan baik. Modul ini disusun untuk memenuhi kebutuhan mahasiswa dalam mata kuliah Praktikum SPSS yang dapat membantu mahasiswa menjalankan fungsi-fungsi yang ada dalam aplikasi SPSS yang dapat digunakan untuk menyelesaikan tugas akhir mereka nanti dalam hal mengolah data penelitian hingga melakukan analisis terhadap hasil olah data dengan menggunakan metode kuantitatif.

Penulis menyadari sepenuhnya bahwa modul ini tentu memiliki banyak kekurangan. Untuk itu penulis dengan lapang dada menerima masukan dan kritik yang konstruktif dari berbagai pihak demi kesempurnaannya di masa yang akan datang. Semoga modul ini dapat bermanfaat bagi para pembaca.

Penulis,

Indrayani, M.Ak.

BAB I

PENGENALAN STATISTIK DAN APLIKASI SPSS

Statistik diartikan sebagai kegiatan untuk: Mengumpulkan data, meringkas atau menyajikan data, menganalisis data dengan metode tertentu, menginterpretasikan hasil analisis tersebut.

Sedangkan dalam bidang ilmu manajemen, Ilmu statistik berguna untuk membantu dalam pengambilan keputusan atas masalah tertentu.

Ilmu Statistik dapat dibagi dua yaitu:

1) *Statistik Deskriptif* adalah menjelaskan bagaimana cara data dikumpulkan dan diringkas terhadap hal-hal penting pada data.

2) *Statistik Inferensi* adalah: setelah data dikumpulkan dan diinterpretasikan data menjadi statistik deskriptif maka statistik mengambil peran dalam mengambil keputusan (dengan kata lain *statistik inferensi berperan dalam mengambil keputusan*).

Berdasarkan sudut pandang statistik data dibagi menjadi:

🥝 DATA KUALITATIF

adalah data yang dinyatakan dalam bentuk **bukan angka**.

Contoh: Status Pernikahan (belum menikah, menikah, duda, janda); gender (pria, wanita); kepuasan seseorang (tidak puas, cukup puas, sangat puas), dan sebagainya.

OATA KUANTITATIF

Adalah data yang dinyatakan dalam bentuk angka.

Contoh: usia, tinggi badan, berat badan, penjualan, jumlah bakteri, dan sebagainya.

Keterangan:

✓ Data Nominal adalah data yang diperoleh dengan cara kategorisasi atau klasifikasi.

Contoh : jenis pekerjaan diklasifikasikan sebagai. . .

Pegawai negeri = 1 Pegawai Swasta = 2 Wiraswasta = 3

Ciri-ciri: Posisi data setara, tidak bisa dilakukan operasi matematika

Data Ordinal adalah data yang diperleh dengan cara kategorisasi atau klasifikasi, tetapi diantara data tersebut terdapat hubungan.
 Contoh : Kepuasan Pelanggan diklasifikasi sebagai

Sangat puas diberi tanda Puas diberi tanda Cukup puas diberi tanda) 1 2 3	berdasarkan perasaan
seseorang Tidak puas diberi tanda 4		
Sangat tidak puas diberi tanda 5	J	

Ciri-ciri : posisi data tidak setara ("sangat puas" lebih tinggi dari "puas"), disesuaikan dengan angka kodenya.

Data interval adalah data yang diperoleh dengan cara pengukuran, dimana jarak antara dua titik pada skala tertentu sudah diketahui.
 Contoh: mengukur temperatur suatu ruangan

Bisa diukur dalam °C atau °F, dengan masing-masing skala tertentu

- * Celsius pada 0° C sampai 100° C, skala tersebut sudah jelas jaraknya, yaitu: 100 - 0 = 100
- * Fahrenheit pada 32° C sampai 212° C, yaitu: 212 32 = 180

Ciri-ciri: tidak ada kategorsasi atau pemberian kode, bisa dilakukan operasi matematika

 Data rasio adalah data yang diperoleh dengan cara pengukuran, dimana jarak antara dua titik pada skala tertentu sudah diketahui, dan mempunyai titik nol yang absolut.

Contoh : jumlah komputer di laboratorium

Jika 5, berarti ada 5 buku, jika 0, berarti tidak ada buku sama sekali (absolut, benar-benar 0)

Ciri-ciri : tidak ada kategorisasi/pemberian kode, bisa dilakukan operasi matematika.

SPSS dan Komputer Statistik

SPSS adalah *software* statistik yang paling populer dan paling banyak digunakan di seluruh dunia. SPSS banyak dipakai dalam berbagai riset pasar,

pengendalian dan perbaikan mutu *(qualitiy improvement)* serta riset-riset sains. Kepopuleran SPSS ini dijadikan sebagai alat untuk pengolahan data.

SPSS adalah singkatan dari *Statistical Package for the Social Sciences*, sekarang diperluas untuk melayani berbagai jenis *user*, seperti untuk proses produksi dipabrik, riset ilmu-ilmu sains dan lainnya. Sekarang kepanjangan SPSS adalah *Statistical Product and Service Solutions*. Hingga saat sekarang produk SPSS telah dipakai dalam berbagai bidang seperti ilmu keuangan, retail, telekomunikasi, farmasi, *broadcasting*, militer, *database marketing*, riset pemasaran, peramalan bisnis, penilaian kredit, *customer relationship*, penilaian kepuasan konsumen *(customer satisfaction)* dan sebagainya.

MEMULAI PROGRAM SPSS

Langkah-langkahnya adalah sebagai berikut:

- ∀ Klik pada tombol Start
- igarsigma Klik pada menu program
- Klik pada SPSS for Windows
- \bigotimes Klik pada SPSS 13.00 For Windows

Atau langsung Klik Shortcut SPSS for Windows pada Dekstop

Keluar dari SPSS:

Setelah data disimpan, akhiri program SPSS dengan mengklik File Lalu Exit

Data Editor

1. Data View

Sebelum mulai menganalisa data yang pelu dilakukan pertama kali adalah entri data ke SPSS. Ketika awal membuka program SPSS akan muncul tampilan data view pada data editor seperti gambar dibawah ini :

置い	Intitl	ed - SPSS D	ata Editor				l	
File	Edit	View Data	Transform A	Analyze Graph	is Utilities W	indow Help		
Ē		ð 🖳 🖻		🖦 😰 🏘		11 🖪 🖻	6	
1:								
		var	var	var	var	var	var	VE.
	1							
	2							
	3							
	4							
	5							
<u> </u>	6							
	⊡\Da	ata View 📈	ariable View	/	•			· •
				SPSS Proces	sor is ready			

MENU UTAMA PADA SPSS FOR WINDOWS

File	:	Digunakan untuk membuat file baru, membuka, menyimpan, membaca database, mencetak, membaca text data, dll
Edit	:	Digunakan untuk mengcopy, menghapus, mencari dan

		mengganti data serta memodifikasi dari submenu option
Data	:	Digunakan untuk memilih dari file data SPSS, seperti menyisipkan variabel, tranpose, merge file, memili case,dll
Transform	:	Menu untuk mentransformasikan data berdasar kriteria tertentu seperti penjumlahan antar variabel, recoding, dll
Analize	1	Menu untuk mengolah data seperti korelasi, regresi, uji-t, dll
Graph	:	Menu untuk memvisualisasikan data seperti histogram, scatter- plot, boxplot, dll
Utilities	:	Menu pendukung yang berisi: informasi variabel, informasi file, menu editor, dll

2. Variable View

Bagian kedua dari data editor adalah variable view, seperti gambar di bawah ini:

🛅 Untitled - SPSS Data Editor										
File Edit View Data	Transform Analy	/ze Graph	s Utilities Ado	-ons Window H	elp					
F . 5	- -	网情		<u>,</u> SQ						
Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	1-
1										
2										
3										
4										_
5										-
6										-
/										- 1
8										-
9										
11										-
12										-
13										-
14										-
15										-
16										-
17										-1
18										-
19										
20										
▲ IN Data View XVa	ariable view /		CDCC Due to							<u>-</u>

Name :	Memberikan nama variabel. T idak boleh ada spasi kosong, karakter pertama harus berupa harus berupa huruf atau karakter, karakter terakhir tidak boleh berupa titik. Huruf besar dan huruf kecil dianggap sama
Type :	Untuk menentukan type data pada kolom type, antara lain : Numeric : merupakan type data dengan tanda plus dan tanda minus didepan angka serta indikator desimal. Panjang maksimalnya 8 karakter Comma : Harga yang valid termasuk angka, tanda plus dan tanda minus didepan angka tanda koma digunakan sebagai pemisah ribuan Dot : Tipe ini sama dengan type comma, hanya saja pemisah ribuan yang digunakan adalah tanda titik Scientific Notation : Harga valid sama dengan tipe numeric, namun merupakan tipe data yang menggunakan lambang atau

nd D W D Se C	otasi ilmiah seperti log, alfa, dll ate : Tipe ini menampilkan data dalam format tanggal atau aktu ollar : Harga yang valid adalah tanda dollar (\$), sebuah titik ebagai indikator desimal dan beberapa tanda koma sebagai emisah ribuan ustom Currency : Type ini digunakan untuk menampilkan
fo St ka	rrmat mata uang seperti Rp. 1000,- <mark>tring :</mark> Harga yang valid adalah huruf, angka, dan karakter- arakter lain
Width : L la	ebar kolom adalah 8. Namun dapat diubah dengan mengetik Ingsung lebar kolom yang diinginkan
Decimal : D)igunakan untuk menentukan jumlah desimal yang diinginkan
Label : D ya	igunakan untuk memberikan tambahan dari variabel-variabel ang ada
Value : Po va pe	engelompokan jalur atau klasifikasi. Nilai ini digunakan untuk aribel dummy atau didasarkan pada kelompok, misalnya status endidikan, jenis perlakuan, dll
Missing (data hilar	ng) ada 3 fasilitas:
🥝 No missing v	value : artinya tidak ada data yang hilang
Oiscrite miss tinggalkan	sing value menyediakan data yang akan dihilangkan atau di
Range plus	one optional discrete missing value adalah data yang berupa
interval, yait	u nilai terendah sampai nilai tertinggi yang akan
dihilangkan/	ditinggalkan
Aligment : M ka	lerupakan pilihan untuk meletakkan data pada posisi rata kiri, anan atau tengah.
Measure ada 3 ma	cam data, yaitu :
- Nominal	
- Scale	
- Ordinal	

BAB II

STATISTIKA DESKRIPTIF

Statistika deskriptif adalah metode-metode yang berkaitan dengan pengumpulan dan penyajian suatu gugus data sehingga memberikan informasi yang bermanfaat. Statistika deskriptif hanya memberikan infomasi mengenai data yang dimiliki dan sama sekali tidak menarik suatu kesimpulan apapun tentang gugus data induk yang lebih besar. Statistik deskriptif ada beberapa metode antara lain frequency, descriptive, explore dan crosstab. Namun dalam kesempatan kali ini akan ditampilakan statistika deskriptive dengan merode frequency dan deskriptif.

Contoh data :

Gender	Gaji	Usia	Gender	Gaji	Usia
1	451000	30	1	500500	25
1	500000	25	0	300500	29
1	350000	26	1	450000	30
0	365000	27	1	560000	24
1	255050	31	0	385000	23
1	685000	20	0	501000	28
0	751000	25	1	790000	26
0	650000	27			

A. FREKUENSI

Tujuannya adalah menggambarkan data dalam berbagai ukuran pusatnya seperti mean, median, persentil dan lainnya.

Prosedur untuk menampilakan tabel satatistik adalah :

- Pilih menu Analize....
- Klik submenu **Descriptive Statistics**...
- Klik Frequencies...

Pengisian :

- Variable (s) atau variabel yang akan dimasukkan. Pilih variabel Usia
- Klik pilihan Statistics.....untuk menampilkan nilai-nilai statistik

Pada tabel Percentile Values (nilai persentil) terdapat :

- **Quartiles:** menampilkan kuartil 1 (persentil 25), kuartil 2 (persentil 50) dan kuartil 3 (persentil 75)

- Cut point For n Equal Groups: menampilkan nilai-nilai persentil yang membagi sampel data sampel data kedalam grup-grup case yang berukuran sama.
- **Percentile (s):** menampilakan nilai-nilai persentil dari 0 sampai 100.

Untuk keseragaman pilih..... Quartiles dan Percentile(s). Kemudian pada kotak disamping kanan Persentiles ketik 10, lalu tekan add. Sekali lagi ketik 90 pada kotak terdahulu, dan klik lagi tombol add. Maksudnya : untuk membuat nilai persentil pada 10 dan 90.

Pada tabel Central tendency (ukuran pemusatan) ditampilkan sebagai berikut :

- Mean : nilai rata-rata hitung
 Median : nilai tengah setelah data diurutkan dari kecil ke besar atau sebaliknya.
- Modus : nilai yang sering muncul
- Sum : nilai dari jumlah keseluruhan data

Untuk keseragaman pilih.....mean dan median

Pada tabel **Dispersion** (nilai ragam) ditampilkan sebagai berikut:

- Std Deviation : nilai simpangan baku
- Variance : nilai varians (kuadrat dari standar deviasi)
- Range : nilai kerak (nilai data terbesar nilai data terkecil)
- Minimum : nilai data terkecil
- Maximum : nilai data terbesar
- **S.E mean :** nilai kesalahan standar dari mean sampel (variabilitas) Untuk keseragaman **pilih keenam** jenis pengukuran dispersi.

Pada tabel Distribution ditampilkan sebagai berikut :

- Skewness : nilai kemencengan dari distribusi data
- Kurtosis : nilai kerincingan dari distribusi data

Untuk keseragaman pilih......Skewness dan Kurtosis

Kemudian.....tekan **Continue** dan klik pilihan **Chart** untuk menampilkan grafik histogram, bar atau pie.

Pada Chart Value ditampilkan :

- Frequencie : grafik ditampilkan berdasarkan jumlah data
- Percentages: grafik ditampilkan berdasarkan persentase

Kemudian...tekan **Continue** dan klik pilihan **Format** untuk memodifikasi bentuk atau format tabel frekuensi yang dihadilkan pada layar output.

Pada Order By terdapat :

- Ascending Values : nilai-nilai pada tabel diurutkan secara ascending (naik)
- Descending Values : nilai-nilai pada tabel diurutkan secara descending (turun)
- Ascending Count : nilai frekuensi ditabelkan secara ascending (naik)
- **Descending Count :** nilai frekuensi ditabelkan secara descending (turun)

Untuk keseragaman pilih **Ascending Values**. Sedang bagian **Multiple Variables diabaikan.** Kemudian tekan **Continue**......dan **OK**

FREQUENCIES

usia karyawan		
Ν	Valid	15
	Missing	0
Mean		26,40
Std. Error of Mean		,76
Median		26,00
Std. Deviation		2,95
Variance		8,69
Skewness		-,357
Std. Error of Skewne	ess	,580
Kurtosis		,152
Std. Error of Kurtos is	6	1,121
Range		11
Minimum		20
Maximum		31
Percentiles	10	21,80
	25	25,00
	50	26,00
	75	29,00
	90	30,40

Statistics

	usia karyawan							
		Frequency	Percent	Valid Percent	Cumulative Percent			
Valid	20	1	6,7	6,7	6,7			
	23	1	6,7	6,7	13,3			
	24	1	6,7	6,7	20,0			
	25	3	20,0	20,0	40,0			
	26	2	13,3	13,3	53,3			
	27	2	13,3	13,3	66,7			
	28	1	6,7	6,7	73,3			
	29	1	6,7	6,7	80,0			
	30	2	13,3	13,3	93,3			
	31	1	6,7	6,7	100,0			
	Total	15	100,0	100,0				

Interpretasi :

Bagian Statiscs :

- **N** atau jumlah data yang valid adalah 15, sedangkan data yang hilang (missing) adalah nol. Artinya semua data suap untuk diproses.
- **Mean** atau rata-rata usia karyawan adalah 26,40 tahun dengan standar error adalah 0,76 tahun.
- **Median** sebesar 26 tahun, menunjukkan bahwa 50% usia karyawan adalah 26 tahun keatas, dan 50% adalah 26 tahun ke bawah.
- **Standar Deviasi** adalah 2,95 tahun dan varians yang merupakan kuadrat darai standar deviasi adalah 8,69

• Ukuran Skewness adalah –0,357. Maka rasio skewness adalah = nilai skewness/ standard error skewness, yaitu 0,357/0,580 = 0,6155

Ukuran Kurtosis adalah 0,152. Rasio Kurtosis adalah nilai kurtosis /standard error kurtosis, yaitu 0,152/1,121 = 0,1356

Sebagai pedoman :

Jika rasio Skewness dan kurtosis berada diantara –2 sampai dengan +2, maka distribusi data adalah normal

- Data minimum adalah 20 tahun, sedangkan data maksimum adalah 31 tahun
- Range adalah data maksimum data minimum, yaitu 31 20 = 11
- Percentiles atau angka persentil : 10% karyawan mempunyai rata-rata usia dibawah 21,8 tahun 25% karyawan mempunyai rata-rata usia dibawah 25 tahun , dst

<u> Tabel usia karyawan :</u>

• Baris pertama : Karyawan yang berusia 20 tahun berjumlah (frequency)1 orang, atau secara persentase dari total jumlah karyawan adalah :

Demikian seterusnya sampai mencapai 100% kumulatif.

B. DESCRIPTIVE

Tujuannya adalah memberikan gambaran (deskripsi) tentang suatu data, seperti berapa rata-rata, standar deviasi, varians, dan lain sebagainya.

Prosedur untuk menampilkan tabel statistik adalah :

- Pilih menu Analize....
- Klik submenu **Descriptive Statistics**...
- Klik Descriptive...

Pengisian:

- Variable (s) atau variabel yang akan dimasukkan. Pilih variabel gaji
- **Options** atau pilihan untuk mengerjakan deskripsi data.

Pada Display Order terdapat :

- Variable list : variabel-variabel diurutkan berdasarkan urutan yang ditampilkan pada kotak dialog
- Alphabetic : variabel diurutkan berdasarkan alfabet

- Ascending means : variabel diurutkan berdasarkan mean secara ascending (naik)
- Descending means : variabel diurutkan berdasarkan mean secara descending (menurun)

Untuk keseragaman pilih :

• Mean, Standart Deviation, Minimum, Maximum dan Sum

Kemudian tekan **Continue**.....

Abaikan bagian yang lain. Tekan OK

Output SPSS

Descriptive Statistics

	Ν	Minimum	Maximum	Sum	Mean	Std. Deviation
gaji karyawan	15	255050	790000	7494050	499603,33	161704,46
Valid N (listwise)	15					

Interpretasi :

15 karyawan mempunyai gaji rata-rata Rp. 499.603,3 dengan standar deviasi Rp. 161.704,46. Total gaji keseluruhan adalah Rp. 7.494.050 dengan gaji minimum Rp. 255.050 dan maximum Rp. 790.000 . Standar deviasi yang sangat besar (lebih dari 30 % dari mean) menunjukkan adanya variasi yang besar, atau adanya kesenjangan yang cukup besar antara gaji terendah dan tertinggi.

BAB III

KORELASI

Korelasi adalah salah satu teknik statistic yang digunakan untuk mencari hubungan antara dua variable atau lebih yang sifatnya kuantitatif. Arah hubungan antara 2 variabel dapat dibedakan menjadi :

- 1. Direct correlation (positive correlation). Perubahan pada satu variable diikuti perubahan variable yang lain secara teratur dengan arah gerakan yang sama.
- Inverse correlation (negative correlation) Perubahan pada satu variable diikuti perubahan variable yang lain secara teratur dengan arah gerakan yang berlawanan.
- 3. Nihil correlation. Arah perubahan kedua variable yang tidak teratur.

Koefisien Korelasi sering dilambangkan dengan huruf (*r*). Koefisien korelasi dinyatakan dengan bilangan, bergerak antara **0 sampai +1** atau **0 sampai -1**. apabila korelasi mendekati +1 atau -1 *berarti terdapat hubungan yang kuat*, sebaliknya korelasi yang mendekati nilai **0** bernilai *lemah*. Apabila korelasi **sama dengan 0 (nol)**, maka antara kedua variable tersebut *tidak terdapat hubungan sama sekali*. Pada korelasi +1 atau -1 *terdapat hubungan yang sempurna antara kedua variable*.

Nilai positif (+) atau negative (-) menunjukkan arah hubungan antara kedua variable. Pada notasi positif (+), hubungan antara kedua variable searah, jadi jika satu variable naik maka variable yang lain juga naik. Pada notasi negative (-), kedua variable berhubungan terbalik, artinya jika satu variable naik maka variable yang lain jugtru turun.

A. KORELASI PRODUCT MOMENT (Pearson)

Korelasi Pearson atau disebut juga korelasi product moment merupakan analisis korelasi untuk statistic parametric, sedangkan untuk statistic non parametric sering digunakan analisis korelasi Kendall's dan Spearman.

Contoh:

Mahasiswa kehutanan Brawijaya hendak menghitung korelasi antara diameter pohon dengan volume kayu. Diperoleh data sebagai berikut:

Langkah-langkah :

- 1. Entrilah data ke lembar kerja SPSS
- 2. Klik **Analyze ... Correlate....Bivariate...**, lalu pindahkan variable *diameter* dan *volume* ke kolom *Variables*. Pada correlation, pilih

	diameter	volume	
1	50	1,9	(
2	65	2,6	
3	63	2,5	
4	57	2,2	[
- 5	84	3,2	
6	36	1,5	
- 7	48	1,7	
8	52	1,9	
9	58	2,2	
10	56	2,0	
11	66	2,6	
12	78	2,6	
13	71	2,5	
- 14	49	1,7	
15	56	2,2	ľ
- 16	58	2,2	
17	60	2,0	
18	72	2,5	6

Pearson. . . Klik OK Correlations

	Correlation	S	-
		DIAMETER	VOLUME
DIAMETER	Pearson Correlation	1	,942**
	Sig. (2-tailed)	,	,000
	Ν	18	18
VOLUME	Pearson Correlation	,942**	
	Sig. (2-tailed)	,000,	,
	Ν	18	18

**. Correlation is significant at the 0.01 level (2-tailed).

INTERPRETASI

Angka koefisien korelasi adalah **0,942**, artinya hubungan $\frac{2,2}{2,0}$ antara diameter dengan volume kayu sangat erat.

Koefisien korelasi bertanda positif (+), *artinya* hubungan diameter pohon dengan volumenya searah sehingga jika diameter semakin besar maka volume kayu juga semakin besar.

Tanda ** menunjukkan bahwa koefisien korelasi tersebut signifikan pada taraf kepercayaan 99%

PERHITUNGAN TEORITIS

Rumus Korelasi Product Moment (Pearson)

$$r = \frac{\left(n\sum_{i=1}^{n} XiYi\right) - \left(\sum_{i=1}^{n} Xi\right)\left(\sum_{i=1}^{n} Yi\right)}{\left(\sqrt{n\sum_{i=1}^{n} Xi^{2} - \left(\sum_{i=1}^{n} Xi\right)^{2}}\right)\left(\sqrt{n\sum_{i=1}^{n} Yi^{2} - \left(\sum_{i=1}^{n} Yi\right)^{2}}\right)}$$

No	Diameter (X)	Volume (Y)	X ²	Y ²	XY
1	50	1,9	2500	3,61	95
2	65	2,6	4225	6,76	169
3	63	2,5	3969	6,25	157,5
4	57	2,2	3249	4,84	125,4

5	84	3,2	7056	10,24	268,8
6	36	1,5	1296	2,25	54
7	48	1,7	2304	2,89	81,6
8	52	1,9	2704	3,61	98,8
9	58	2,2	3364	4,84	127,6
10	56	2,0	3136	4	112
11	66	2,6	4356	6,76	171,6
12	78	2,6	6084	6,76	202,8
13	71	2,5	5041	6,25	177,5
14	49	1,7	2401	2,89	83,3
15	56	2,2	3136	4,84	123,2
16	58	2,2	3364	4,84	127,6
17	60	2,0	3600	4	120
18	72	2,5	5184	6,25	180
	1079	40,0	66969	91,88	2475,7

$$r = \frac{18(2475,7) - (1079)(40)}{\left(\sqrt{18(66969) - (1079)^2}\right)\left(\sqrt{18(91,88) - (40)^2}\right)}$$

= 0,9417 (sama dengan output SPSS)

Uji Signifikansi koefisien

korelasi (r)

Hipotesis

Ho = korelasi antara kedua variable sama dengan nol Hi = korelasi antara kedua variable tidak sama dengan nol

Dasar pengambilan keputusan

Dengan uji t

$$t_{hitung} = \frac{r\sqrt{n-2}}{\sqrt{(1-r^2)}}$$

Pengambilan keputusan

$$t_{hitung} = \frac{0,9417\sqrt{18-2}}{\sqrt{(1-0,9417^2)}}$$

= 66,5506

Ttabel dengan taraf kepercayaan 95%, dilihat pada α 0,025 (karena dilakukan uji 2 sisi)

Derajad bebas= n - 2 = 18 - 2 = 16. ttabel (0,025;16)= **2,120**

Keputusan, karena $t_{hitung} > t_{tabel}$ (66,5506 > 2,120) maka Ho ditolak, artinya hubungan kedua variable signifikan.

BAB IV ANALISA REGRESI

Suatu kejadian pasti terjadi karena suatu sebab, begitulah hukum sebab akibat. Contohnya suatu hari Si Amir diberi PR oleh pak guru, sesampai dirumah ketika akan mengerjakan PR ternyata bolpoinnya hilang, maka di pergi ke toko diseberang jalan, Amir menyeberang tanpa melalui zebra cross, kemudian tiba-tiba ada mobil berkecepatan tinggi menabraknya dan akhirnya Amir tewas. Dari kejadian tersebut sebenarnya siapakah atau apakah yang menyebabkan kematian Amir. Apalah pak guru yang memberi PR, apa karena bolpoinnya hilang, apa katena tokonya jauh, apa karena Amir tidak hati-hati, apa karena Amir tidak menyeberang melalui zebra cross, atau karena sopir mobil yang mabuk. Analisa regresi digunakan untuk mengetahui apakah suatu variable dapat digunakan untuk memprediksi atau meramalkan variable-variabel lain. Analisis korelasi dan analisa regresi mempunyai kaitan.

Dari contoh diatas dapat diambil kesimpulan bahwa mungkin pak guru yang memberikan PR berpengaruh terhadap kematian Amir, tetapi sebenarnya yang menjadi penyebab utama adalah sopir yang mabuk dan Amir yang tidak tertib.

Analisis keeratan hubungan sangat penting untuk dapat menentukan keputusan yang tepat. *Analisis korelasi* digunakan untuk mengetahui apakah ada hubungan antara dua atau lebih variable, sedangkan *analisa regresi* digunakan untuk memprediksi atau meramalkan seberapa jauh pengaruh satu atau beberapa variable bebas (*independent*) terhadap variable terikat (*dependen*). Analisis regresi hanya dapat atau perlu dilakukan jika telah diketahui bahwa ada hubungan yang signifikan antarvariabel yang bersangkutan.

Para ilmuwan, ekonom dan sosiolog selalu berkepentingan dengan masalah peramalan. Persamaan matematik yang memungkinkan kita meramalkan nilai-nilai satu atau lebih peubah acak bebas disebut *persamaan regresi*.

A. ANALISIS REGRESI SEDERHANA

Jika suatu variabel terikat (*dependent variable*) tergantung pada satu variable bebas (*independent variable*), hubungan antara kedua variable disebut *analisis regresi sederhana*.

Bentuk persamaan :

dimana : Y = variable terikat (dependen) X = variable bebas (independent)

- b = koefisien regresi (slope)
- a = konstanta regresi

Perhitungan teoritis

$$Y = a + bX$$
$$b = \frac{n\sum_{i=1}^{n} XiYi - \left(\sum_{i=1}^{n} Xi\right)\left(\sum_{i=1}^{n} Yi\right)}{n\sum_{i=1}^{n} Xi^{2} - \left(\sum_{i=1}^{n} Xi^{2}\right)}$$

$$a = y - b x$$

Contoh:

Seorang manager pemasaran ingin mengetahui pengaruh antara harga jual terhadap volume penjualan. Diperoleh data sebagai berikut:

	harga	pnjualan
1	1300	10000
2	2000	6000
3	1100	20000
4	1000	17000
5	1400	12000
6	1600	5000
- 7	1200	15000
8	1600	10000
9	1500	12000
10	1700	5000

Langkah – langkah :

1. Entrilah data ke lembar SPSS

2. Klik *Analize... Regression... Linear...* pada menu bar. Kemudian pindahkan variable *Harga* sebagai *variable bebas* ke dalam *Independen(s)* dan variable *Penjualan* sebagai *variable tergantung* ke kolom *Dependent*.

3. Klik menu **Statistic...** aktifkan *Estimate, Confidence intervals, Model fit, dan Descriptives,* kemudian klik

Continue.

Keterangan:

Estimates berguna untuk memperkirakan hasil analisis regresi

Confidence intervals merupakan interval taraf kepercayaan dari persamaan regresi yang didapat. Pada interval taraf kepercayaan akan ditampilkan *lower bound* dan *upper bound* kurva normal.

Covariance matrix akan menampilan matriks varian/kovarian.

Model fit akan menampilkan analisis regresi yang disertakan analisis varian atau uji F regresi. Uji F ini berguna untuk mengetahui semua variable predictor (variable bebas) yang berpengaruh terhadap variable tergantung.

- 4. Klik Option. OK
- 5. **OK...**

OUTPUT

Regression

Descriptive Statistics

	Mean	Std. Deviation	Ν
PNJUALAN	11200,00	5094,660	10
HARGA	1440,00	302,581	10

	Correlation	S	
		PNJUALAN	HARGA
Pearson Correlation	PNJUALAN	1,000	-,863
	HARGA	-,863	1,000
Sig. (1-tailed)	PNJUALAN	,	,001
	HARGA	,001	,
Ν	PNJUALAN	10	10
	HARGA	10	10

Variables Entered/Removed^b

	Variables	Variables	
Model	Entered	Removed	Method
1	HARGA ^a	,	Enter

a. All requested variables entered.

b. Dependent Variable: PNJUALAN

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,863 ^a	,746	,714	2725,453

a. Predictors: (Constant), HARGA

ANOV A^b

Model		Sum of Squares	df		Mean Square	F	Sig.
1	Regression	174175243		1	174175242,7	23,448	,001 ^a
	Residual	59424757		8	7428094,660		
	Total	233600000		9			

a. Predictors: (Constant), HARGA

b. Dependent Variable: PNJUALAN

Coefficients

		Unstanc Coeffic	lardized cients	Standardized Coefficients			95% Confidence	e Interval for B
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1 (C	onstant)	32135,922	4408,588		7,289	,000	21969,701	42302,144
HA	RGA	-14,539	3,002	-,863	-4,842	,001	-21,462	-7,615

a. Dependent Variable: PNJUALAN

INTERPRETASI

1. Tabel Descriptive Statistic dapat dibaca sebagai berikut:

N menunjukkan jumlah data sebanyak 10. Rata-rata penjualan sebesar 112000 dengan standart deviasi 5094,660. Dengan rata-rata harga sebesar 1440 dengan standart deviasi 302.581

2. Tabel Correlation

Korelasi Pearson (Pearson Correlation) = -0.863

Nilai -0.863 merupakan nilai r hitung. Angka ini menunjukkan korelasi atau hubungan negative antara harga dan penjualan, **artinya** jika harga dinaikkan maka jumlah penjualan akan menurun.

3. Tabel Variabel Entered/Removed

Variabel entered artinya adalah variable yang dimasukkan. Variable Removed artinya variable yang dikeluarkan dalam persamaan. Sedangkan metode yang digunakan adalah metode enter.

4. Tabel Model Summary

Diperoleh nilai **koefisien korelasi (R)** antara variable harga dan penualan sebesar **0,863**, berarti hubungan yang kuat antara harga dengan penjualan adalah sebesar **86,30%** (0,863 x 100%).

Nilai koefisien determinasi (R²) adalah **0,746** (dibaca dalam bentuk persen, 0,746 x 100%) *artinya* bahwa **74,60%** variable perjualan dipengaruhi oleh harga sedangkan sisanya sebesar (100% - 74,60%) 24,40% dipengaruhi oleh variable lain yang tidak dimasukkan ke dalam analisis.

Adjusted R Square menurupakan nilai R² yang terkoreksi, sehingga gambarannya lebih mendekati mutu penjajakan. Menurut buku statistic parametric karangan Singgih Santoso, nilai ini di baca jika variable bebasnya lebih dari 2 (dua).

Dari analisa diperoleh Adjusted R Aquare sebesar 0,714, dengan perhitungan teoritis sebagai berikut:

Adjusted $R^2 = 1 - (1 - R^2) \left(\frac{n-1}{n-k} \right)$ dimana : n = jumlah sample , k = jumlah

parameter

Adjusted R² =
$$1 - (1 - 0,746) \left(\frac{10 - 1}{10 - 2}\right) = 0,714$$

Std. Error of Estimation merupakan kesalahan standar dari penaksiran dan bernilai 2725,45311

5. Tabel Anova

Table ini menampilkan nilai F_{hitung}. Uji F berguna untuk menentukan apakah model persamaan yang kita gunakan tepat atau tidak. Model yang kita gunakan adalah model linear Y = a +bX selain itu masih banyak model-model penaksiran yang lain seperti:

Model Juadratik	$Y = a + bX + cX^2$
Model Eksponensial	$Y = ab^x$

Model Growth (pertumbuhan) $Y = a \cdot e^{bx}$, dan lain-lain

Untuk menguji apakah model linear Y = a +bX tersebut sudah tepat atau belum, F_{hitung} pada table anova perlu dibandingkan dengan F_{tabel} .

Diperoleh : Fhitung = 23,448

Ftabel dilihat pada: taraf signifikansi 5%

df pembilang =jumlah variable – 1=(2-1)=1

df penyebut = jumlah data – jumlah variable = (10-2)=8

Ftabel (0,05;8;1)= 5,32

Keputusan :

✓ Berdasarkan perbandingan antara F hitung dan F table
 Oleh karena Fhitung > Ftabel (23,448 > 5,32) maka dapat disimpulkan
 bahwa model linear Y=a+bX sudah tepat dan dapat digunakan.

✓ Berdasarkan perbandingan probabilitas (Sig)

Jika probabilitas > 0,05 maka model ditolak

Jika probabilitas < 0,05 maka model diterima

Diperioleh probabilitas (Sig) 0,001 < 0,05 maka model diterima

6. Tabel Coefficients

Uji t digunakan untuk menguji signifikansi koefisien regresi (b), yaitu apakah variable bebas (x) berpengaruh secara nyata atau tidak.

Hipotesis:

Ho = Harga tidak berpengaruh nyata terhadap penjualan

Hi = Harga berpengaruh nyata terhadap penjualan

Pengambilan keputusan

Jika --ttabel < thitung maka Ho diterima

Jika thitung < -ttabel atau thitung > ttabel maka Ho ditolak Diperoleh : thitung = **-4,842**, ttabel α =5%, derajat bebas = jumlah sample – jumlah variable = (10-2)= 8 dimana dilakukan uji 2 arah (¹/₂ 0,05). Ttabel (0,025;8)= **2,306**, Keputusan Ho ditolak, artinya harga jual berpengaruh secara signifikan terhadap volume penjualan.

Pada kolom Unstandardized coefficients diperoleh:

Constant (konstanta) = 32135,922 (a)

Harga per kemasan = -14,539 (b (koefisien x))

Sehingga diperoleh persamaan regresi Y = 32135,922 - 14,539 X

B. ANALISA REGRESI LINIER BERGANDA

Jika sutu variabel terikat (*dependent variable*) memiliki hubungan atau bergantung pada beberapa variable independent (*variable bebas*).

Bentuk Persamaan:

Contoh:

	iklan_x1	qc_x2	у
1	10	3	44
2	9	4	40
3	11	3	42
4	12	3	46
5	11	4	48
6	12	5	52
- 7	13	6	54
8	13	7	58
9	14	7	56
10	15	8	60

Seorang manajer ingin mengetahui sejauh mana pengaruh biaya iklan dan pengendalian mutu dalam mempengaruhi pendapatan perusahaan. Diperoleh data sebagai berikut:

Langkah-langkah:

1. Entrilah data ke lembar SPSS

2. Analize....Regression....Linier....

Linear Regression		
 IKLAN [iklan_x1] ♥ QUALITY CONTROL [\rightarrow	Dependent: OK PENERIMAAN [y] Paste
	Previous	Block 1 of 1 Next Reset
	•	Independent(s): Cancel Help ULALIN [klan_x1] Help Method: External Method: External
		Selection Stepwise Rule Backward Backward
WLS >>	Statistics	Plots Save Options

Pindahkan variable penerimaan (Y) sebagai variable bergantung ke kolom *dependent* serta variable iklan (x1) dan variable quality control (x2) ke kolom *independent* sebagai variable bebas.

Pada kolom method terdapat beberapa pilihan metode yang diinginkan.

- Metode Enter adalah metode analsis biaya dimana semua variable bebas dimasukkan sebagai variable predictor tanpa memandang apakah variable tersebut berpengaruh besar atau kecil pada variable bergantung.
- Metode Stepwise digunakan untuk analisis regresi secara bertahap dengan tujuan pokok mencari variable yang paling dominant.
- Metode Remove digunakan untuk mencari predictor yang dominan dan bila variable predictor tidak bepengaruh maka akan dibuang (remove)
- Metode Backward menganalisis variable dari belakang, artinya semua variable dianalisis kemudian dilanjutkan menganalisis pengaruh variable-variabel bebasnya, kemudian variable yang tidak berpengaruh dibuang.
- Metode Forward menganalisis variable dari depan, maksudnya semua variable pertamanya dianggap tidak berpengaruh semua, kemudian variable-variabel yang berpengaruh dimasuk-masukkan.

Pada keadaan defaut metode yang digunakan adalah metode Enter.

- 3. Klik **Option...**, biarkan pada keadaan default...
- Klik Statistik. . . aktifkan kotak estimates dan model fit. Abaikan yang lain. . . .tekan OK

OUTPUT

Regression

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1		,	Enter

a. All requested variables entered.

b. Dependent Variable: PENER IMAAN

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,964 ^a	,930	,910	2,095

a. Predictors: (Constant), QUALITY CONTROL, IKLAN

ANOVA

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	409,268	2	204,634	46,610	,000 ^a
	Residual	30,732	7	4,390		
	Total	440,000	9			

a. Predictors: (Constant), QUALITY CONTROL, IKLAN

b. Dependent Variable: PENERIMAAN

Coefficients

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	17,944	5,919		3,031	,019
	IKLAN	1,873	,703	,489	2,663	,032
	QUALITY CONTROL	1,915	,681	,517	2,813	,026

a. Dependent Variable: PENERIMAAN

INTERPRETASI

1. Tabel Variables Entered/Removed

Dari table ini dapat dilihat bahwa semua variable X1 dan X2 masuk kedalam persamaan dengan metode yang diguankan adalah metode enter

2. Tabel Model Summary

Diperoleh nilai **koefisien korelasi (R)** sebesar **0,964**, berarti hubungan yang kuat antara variable independent (X1 dan X2) dengan variable dependen (Y).

Nilai koefisien determinasi (R²) adalah **0,930** (dibaca dalam bentuk persen, 0,746 x 100%) *artinya* bahwa **93%** prnrrimaan perusahaan dipengaruhi oleh iklan dan quality control sedangkan sisanya sebesar (100% - 93%) 6 % dipengaruhi oleh variable lain yang tidak dimasukkan ke dalam analisis. Sedangkan nilai Adjusted R Square sebesar 0,910.

3. Tabel Anova

F hitung digunakan untuk menguji apakah model persamaan $Y = a + b_1X_1 + b_2X_2$ yang diajukan dapat diterima atau tidak. Diperoleh **Fhitung sebesar 46,61**

Ftabel dilihat pada: taraf signifikansi 5%

df pembilang =jumlah variable(k) - 1=(3-1)=2

df penyebut = jumlah data – jumlah variable = (10-3)=7

Ftabel (0,05;2;7)= 4,74

Keputusan :

✓ Berdasarkan perbandingan antara F hitung dan F table

Oleh karena **Fhitung > Ftabel (46,61 > 4,74**)maka dapat disimpulkan bahwa *model linear* Y=*a*+*bX sudah tepat dan dapat digunakan.*

✓ Berdasarkan perbandingan probabilitas (Sig)

Jika probabilitas > 0,05 maka model ditolak

Jika probabilitas < 0,05 maka model diterima

Diperioleh probabilitas (Sig) 0,000 < 0,05 maka model diterima

7. Tabel Coefficients

Uji t digunakan untuk menguji signifikansi koefisien regresi (b), yaitu apakah variable bebas (x) berpengaruh secara nyata atau tidak.

Hipotesis:

Ho = Variabel bebas tidak berpengaruh nyata terhadap variable bergantung

Hi = Variabel bebas berpengaruh nyata terhadap variable bergantung

Pengambilan keputusan

Jika –ttabel < thitung maka Ho diterima

Jika thitung < ttabel atau thitung > ttabel maka Ho ditolak

Ttabel α =5%, derajat bebas = jumlah sample – jumlah variable = (10-3)= 7 dimana dilakukan uji 2 arah (¹/₂ 0,05).

ttabel (0,025;7)= 2,365

thitung (X1) = 2,663, thitung (X2) = 2,813, maka

Variabel iklan (X1), oleh karena thitung > ttabel (2,663 > 2,365) maka Ho ditolak, artinya pengaruh iklan terhadap penerimaan perusahaan adalah signifikan.

Variabel quality control (X2), oleh karena thitung > ttabel (2,813 > 2,365) maka Ho ditolak, artinya pengaruh quality control terhadap penerimaan perusahaan adalah signifikan.

Pada kolom Unstandardized coefficients diperoleh:

Constant (konstanta) = 17,944 (a) Iklan (X1) = 1,873 (b₁) Quality Control = 1,915 (b₂) Sehingga diperoleh persamaan regresi $Y = 17,944 + 1,873X_1 + 1,915X_2$ Sehingga dapat diuraikan sebagai berikut:

- Konstanta (a) = 17,944 artinya tanpa perlu mengeluarkan biaya iklan dan biaya untuk quality control, perusahaan akan menerima pendapatan sebesar Rp. 17.994 juta.
- Koefisien regresi X1 (b₁) = 1,873 artinya dengan perusahaan mengeluarkan biaya iklan sebesar 1 juta maka akan memberikan tambahan penerimaan pendapatan perusahaan sebesar Rp. 1,873 juta.
- Koefisien regresi X2 (b₂) = 1,915 artinya dengan pengeluaran perusahaan sebesar I juta untuk kegiatan quality control akan memberikan tambahan penerimaan pendapatan perusahaan sebesar Rp. 1,915 juta.

BAB V UJI t

A. UJI t Satu Sampel (One Sample t Test)

Uji t untuk satu sample *(one sample t test)* digunakan untuk menguji apakah rata-rata satu sample berbeda nyata atau tidak dengan suatu nilai tertentu yang digunakan sebagai pembanding.

Contoh:

Didalam pengukuran sebelumnya yang dilakukan di kelas pertama dan kedua, didapatkan rata-rata usia mahasiswa program khusus akademi farmasi adalah 32 tahun. Pengukur beranggapan bahwa pada kelas ketiga mempunyai rata-rata usia yang sama juga. Dari pengukuran pada kelas ketiga diperoleh data sebagai berikut:

Langkah-langkah:

1. Entrilah data ke halaman SPSS

2. Klik Analize.... Compare Means.... One Sample T tes

Pindahkan variable usia ke kolom *Test Variable(s)*.

Kotak Test Value diisi dengan nilai 32 sebagai nilai pembandingnya.

- 3. Klik Option. . . (biarkan sesuai format)
- 4. OK

OUTPUT

T-Test

One-Sample Statistics

				Std. Error
	Ν	Mean	Std. Deviation	Mean
USIA	15	28,27	4,667	1,205

One-Sample Test

	Test Value = 32							
					95% Co Interva	nfidence I of the		
				Mean	Differ	ence		
	t	df	Sig. (2-tailed)	Difference	Lower	Upper		
USIA	-3,098	14	,008	-3,73	-6,32	-1, 15		

	no	usia
1	1	29
2	2	30
3	3	31
4	4	36
5	5	20
6	6	24
7	7	28
8	8	29
9	9	25
10	10	26
11	11	32
12	12	36
13	13	30
14	14	21
15	15	27

INTERPRETASI

1. Tabel One Sample Statistic

Pada table ini menberikan gambaran atau deskripsi data yang ada. Jumlah data adalah 15, rata-rata usia mahasiswa program khusus AKFAR adalah 28,27 dengan standart deviation 4,667 dan std. error mean 1,205.

2. Tabel One Sampel Test

Hipotesis:

Ho = Rata-rata usia mahasiswa program khusus AKFAR adalah 32 tahun

Hi = Rata-rata usia mahasiswa program khusus AKFAR bukan 32 tahun

Pengambilan Keputusan:

Dengan perbandingan thitung dan ttabel:

Jika –ttabel < thitung maka Ho diterima

Jika thitung < -ttabel atau thitung > ttabel maka Ho ditolak

Dengan perbandingan probabilitas dengan tingkat signifikan

Jika probabilitas > 0,05 maka Ho diterima

Jika probabilitas < 0,05 maka Ho ditolak

B. UJI t DUA SAMPEL INDEPENDEN (Independent Sample t Test)

Uji ini digunakan untuk menguji apakah rata-rata suatu group sample berbeda dengan group sample lainnya. Uji t terhadap dua sample bebas artinya bahwa kedua grup tersebut tidak saling berhubungan.

No	Varietas A (ton/Ha)	Varietas B (ton/Ha)
1	4,8	3,4
2	9,4	5,1
3	5,5	3,3
4	4,3	3,2
5	5,8	3,5
6	6,5	4,2
7	4,7	3,5
8	7,1	4
9	8,1	5,2
10	8,1	3,5

Contoh:

Sebuah pusat penelitian PT. Zea Mays ingin mengetahui apakah ada perbedaan hasil jagung varietas A dengan varietas B. Diperoleh data sebagai berikut:

Langkah – Langkah :

1. Masukkan data kelembar SPSS dengan format sebagai berikut:

Berikan value label pada variable

varietas, yaitu:

Varietas A = 1

Varietas B = 2

- 2. Klik Analize . . .Compare Means. . .Independent Sample T-Test Masukkan variable *hasil* ke kolom Test Variabel(s) dan masukkan variable *Varietas* ke kolom Grouping variable.
- **3.** Klik **Define Groups** . . . diisi dengan Group **2**, diisi 2, sesuai dengan jumlah kategori yang ada (*pada contoh hanya ada 2 kategori, yaitu varietas A dan varietas B*)
- **4.** Untuk memilih taraf kepercayaan yang diinginkan , klik Option. Taraf kepercayaan yang dipakai 95%.
- 5. OK

T-Test

	varietas	hasil	Group Statistics										
1	1	4,8					up olui	151105					
2	1	9,4								0	Std Error	ר	
3	1	5,5			тле	N	N/r		Std Dovid	tion	Moon		
4	1	4,3				10						-	
5	1	5,8	_ ¬≁	SIL varieta	SA	10		6,430	1,7	095	,5406		
6	1	6,5		varieta	sВ	10		3,890	,7	/310	,2312		
7	1	4,7								-		_	
8	1	7,1											
9	1	8,1	_	Indonondont Samples Test									
10	1	8,1											
11	2	3,4	_		Levene's	Testfor							
12	2	5,1			Equality of	Variances			t-test fo	r Equality of N	leans		
13	2	3,3										95% Cor	fidence
14	2	3,2								Maan	Otd Error	Differe	
15	2	2.5								ivean	SIU. EITOI		Unner
4.0	2	3,5			F	Sia	t	df	Sig (2-tailed)	Difference	Difference	lower	
16	2	3,5 4,2	HASIL	Equal variances	F	Sig.	t	df 10	Sig. (2-tailed)	Difference	Difference	Lower	0,7750
16	2	3,5 4,2 3,5	HASIL	Equal variances as sum ed	F 7,825	Sig. ,012	t 4,320	df 18	Sig. (2-tailed) ,000	Difference 2,540	Difference ,5879	Lower 1,3048	3,7752
16 17 18	2 2 2 2	3,5 4,2 3,5 4,0	HASIL	Equal variances as sum ed Equal variances	F 7,825	Sig. ,012	t 4,320	df 18 12 185	Sig. (2-tailed) ,000	Difference 2,540 2,540	Difference ,5879	1,3048	3,7752
16 17 18 19	2 2 2 2 2 2	3,5 4,2 3,5 4,0 5,2	HASIL	Equal variances assumed Equal variances not assumed	F 7,825	Sig. .012	t 4,320 4,320	df 18 12,185	Sig. (2-tailed) ,000 ,001	Difference 2,540 2,540	Difference ,5879 ,5879	1,3048 1,2612	3,7752 3,8188
16 17 18 19 20	2 2 2 2 2 2 2 2	3,5 4,2 3,5 4,0 5,2 3,5	HASIL	Equal variances as sumed Equal variances not assumed	F 7,825	Sig. .012	t 4,320 4,320	df 18 12,185	Sig. (2-tailed) ,000 ,001	Difference 2,540 2,540	Difference ,5879 ,5879	1,3048 1,2612	3,7752 3,8488

INTERPRETASI

1. Tabel Group Statistic

Pada table ini dapat dilihat bahwa rata-rata panen untuk jagung varietas A 6,43 ton/ha dengan standart deviasi sebesar 1,7095, sedangkan untuk varietas B 3,89 ton/ha dengan standart deviasi sebesar 0,7310.

2. Tabel Independent Sampel Test

Pengujian varian dua sample
 Hipotesis:

Ho = Kedua sample mempuanyai varian yang sama

Hi = Kedua sample mempunyai varian yang berbeda

Jika Fhitung > Ftabel atau probabilitasnya < 0,05 maka Ho ditolak

Jika Fhitung < Ftabel atau probabilitasnya > 0,05 maka Ho diterima

Diperoleh probabilitas 0,012 (< 0,05) maka Ho ditolak, artinya kedua sample mempunyai varian yang berbeda.

Pengujian rata-rata dua sample

Oleh karena kedua sample mempunyai varian yang tidak sama maka pengujian terhadap nilai rata-rata sebaiknya menggunakan dasar *equal variance not assumed* (diasumsikan kedua sample mempunyai varian yang tidak sama), jadi yang dibaca bagian yang bawah.

Hipotesis

Ho = Rata-rata hasil panen kedua varietas jagung sama

Hi = Rata-rata hasil panen kedua varietas jagung tidak sama

Pengambilan keputusan

Jika –ttabel < thitung < ttabel maka Ho diterima Jika thitung < -ttabel atau thitung > ttabel maka Ho ditolak

Atau,

Probabilitas > 0,05 maka Ho diterima Probabilitas < 0,05 maka Ho ditolak

Ttabel pada α 5 % dan df=18. oleh karena dilakukan uji 2 arah maka α ½ 5%, ttabel (0,025;18)= 2,101, thitung (4,320) > ttabel (2,101) maka Ho ditolak artinya rata-rata hasil panen kedua varietas jagung tidak sama.

C. UJI t DUA SAMPEL BERPASANGAN (Paired Sampel t Test)

Sampel berpasangan adalah sebuah sample dengan subjek yang sama namun mengalami perlakuan yang berbeda, misalnya ke 3 SMK sebelum mengikuti les matematika dan setelah mengikuti les matematika.

Contoh:

Seorang guru matematika ingin menguji apakah kegiatan bimbingan belajar (BIMBEL) secara nyata mempengaruhi prestasi siswa. Untuk itu, guru tersebut melakukan pencatatan nilai matematika siswa sebelum mengikuti BIMBEL dan sesudah mengikuti BIMBEL. Diperoleh data berikut ini:

No	Responden	Nilai Sblm Bimbel	Nilai Ssdh Bimbel
1	Aditya	78	86
2	Rado	77	88
3	Kaila	65	84
4	Raihan	82	86
5	Naysila	88	89
6	Rangga	86	90
7	Dude	79	77
8	Lila	77	77
9	Aila	80	86
10	Raffa	95	99

Langkah-langkah:

1. Entrilah data ke lembar SPSS seperti berikut ini:

	sebelum	sesudah
1	78	86
2	77	88
3	65	84
- 4	82	86
- 5	88	89
6	86	90
- 7	79	77
8	77	77
9	80	86
10	95	99

2. Klik Analize ... Compare Means...Paired Sample T test..., kemudian sorotlah variable "sebelum" dan "sesudah" secara bersama-sama, lalu masukkan kedua variable tersebut ke kolom Paired Variabels....

3. Klik Options. Pada keadaan default, taraf kepercayaan yang dipakai 95%.

4. Continue....OK

Paired Samples Statistics

		Mean	Ν	Std. Deviation	Std.Error Mean
Pair	SEBELUM	80,70	10	7,973	2,521
1	SESUDAH	86,20	10	6,356	2,010

Paired Samples Correlations

		Ν	Correlation	Sig.
Pair 1	SEBELUM & SESUDAH	10	,661	,037

Paired Samples Test

		Paired Differences							
				Std Error	95% Confidence Interval of the				
				SLU. EIIOI	Dillo			.16	
		Mean	Std. Deviation	Iviean	Lower	Upper	t	at	Sig. (2-tailed)
Pair 1	SEBELUM - SESUDAH	-5,50	6,078	1,922	-9,85	-1,15	-2,861	9	,019

INTERPRETASI

1. Tabel Paired Sampel Statistic

Dapat dilihat bahwa rata-rata nilai matematika sebelum BIMBEL adalah **80,70** dengan standar deviasi **7,973** sedangkan rata-rata nilai matematika sesudah mengikuti BIMBEL adalah **86,20** dengan standart deviasi **6,357**. N menunjukkan jumlah data.

2. Tabel Paired Samples Correlations

Menguji keeratan hubungan antara nilai matematika sebelum dan sesudah mengikuti BIMBEL. Diperoleh nilai korelasi sebesar **0,661**. dengan melihat nilai probabilitas *0,037 (< 0,05),* berarti korelasi (hubungan) antara nilai matematika sebelum dan sesudah mengikuti BIMBEL adalah *signifikan atau erat*.

3. Tabel Paired Sampel Test

Hipotesis

Ho = Prestasi siswa sebelum dan sesudah mengikuti BIMBEL sama

Hi = Prestasi siswa sebelum dan sesudah mengikuti BIMBEL berbeda

Pengambilan keputusan

Diperoleh thitung sebesar -2,861, ttabel (1/2 α ;df) = (0,025;9)= 2,262

Oleh karena thitung < -ttabel atau dengan melihat probabilitas sebesar 0,019 (<0,05) maka Ho ditolak, artinya prestasi siswa terbukti meningkat setelah mengikuti BIMBEL.

BAB VI

ONE WAY ANOVA

One Way ANOVA digunakan untuk menguji apakah rata-rata dari beberapa sample berbeda atau tidak.

Contoh:

Penelitian dilakukan untuk mencari kuda yang paling kuat, antara kuda Sumbawa, kuda Eropa, atau kuda Amerika. Penelitian dilakukan dengan menggambil 10 sampel dari masing-masing kuda. Kemudian, masing-masing kuda tesebut diberikan beban untuk ditarik. Hasil penelitiannya adalah sebagai berikut:

	Sumbawa	Eropa	Amerika
	341	360	302
	323	300	304
(j	356	296	286
K K	289	223	245
AN NA	343	250	235
IAT	335	296	216
IKU	361	284	287
KE	298	200	296
	300	208	264
	309	231	259

Langkah-langkah :

1. Entrilah data ke dalam SPSS

Berikan value label pada jenis-jenis kuda sebagai berikut:

Kuda Sumbaw	a = 1
Kuda Eropa	= 2
Kuda Amerika	= 3

	kuda	kekuatan			kuda	kekuatan
1	1	341	1	16	2	296
2	1	323		17	2	284
3	1	356		18	2	200
4	1	289		19	2	208
5	1	343		20	2	231
6	1	335		21	3	302
7	1	361		22	3	304
8	1	298		23	3	286
9	1	300		24	3	245
10	1	309		25	3	235
11	2	360		26	3	216
12	2	300		27	3	287
13	2	296		28	3	296
14	2	200		29	3	264
15	2	223		- 30	3	259

2. Klik **Analize . . . Compare Mean . . . One Way ANOVA. . .** , pindahkan *variable Kekuatan* ke kolom **Dependent List** dan *asal kuda* ke kolom **Factor. . . .**

3. Klik **Option...** aktifkan *Descriptive* dan *Homogenity of variance test*.

Continue . . . OK

Oneway

Descriptives

					95% Confidence Interval for Mean				
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum	
kuda sumbawa	10	325,50	25,483	8,058	307,27	343,73	289	361	
kuda eropa	10	264,80	50,719	16,039	228,52	301,08	200	360	
kuda amerika	10	269,40	30,405	9,615	247,65	291,15	216	304	
Total	30	286,57	45,546	8,316	269,56	303,57	200	361	

KEKUATAN

Test of Homogeneity of Variances

KEKUATAN

Le <i>v</i> ene Statistic	df1	df2	Sig.
4,045	2	27	,029

ANOVA

KEKUATAN

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	22842,867	2	11421,433	8,264	,002
Within Groups	37316,500	27	1382,093		
Total	60159,367	29			

INTERPRETASI

1. Tabel Discriptives

Pada table ini terligat ringkasan statistic deskriptif meliputi jumlah data, rata-rata, standar deviasi, standart error, dan lain-lain.

2. Tabel Test of Homogeneity of variance

Analisis ini bertujuan untuk menguji apakah varian dari populasi asal kuda

(Sumbawa, Eropa dan Amerika) tersebut sama.

Hipotesis

Ho = Ketiga populasi mempunyai varian yang sama

Hi = Ketiga populasi mempunyai varian yang tidak sama

Dasar pengambilan keputusan

Jika probabilitas > 0,05 maka Ho diterima

Jika probabilitas < 0,05 maka Ho ditolak

Keputusan

Diperoleh probabilitas (sig.) 0,029 < 0,05 sehingga Ho ditolak artinya ketiga populasi asal kuda memiliki varian yang berbeda

3. Tabel ANOVA

Analisis ini bertujuan untuk menguji apakah ketiga populasi asal kuda memiliki rata2 yang sama.

Hipotesis

Ho = Ketiga asal kuda mempunyai kekuatan yang sama

Hi = Ketiga asal kuda mempunyai kekuatan yang berbeda

Jika Fhitung < Ftabel atau probabilitasnya > 0,05 maka Ho diterima Jika Fhitung > Ftabel atau probabilitasnya < 0,05 maka Ho ditolak

Diperoleh Fhitung 8,264

Ftabel dapat dilihat pada α 0,05 dengan:

Derajat bebas pembilang = (k-1)=3-1=2

Derajat penyebut = (n-k)=30-3=27, dimana n=jumlah sample, k= jumlah kategori

Kalegon

Ftabel (0,05;2;27)=3,36

Keputusan : Oleh karena Fhitung (8,264) > Ftabel (3,36) maka Ho ditolak, artinya kekuatan kuda dari ketiga daerah tersebut tidak sama. Kemudian muncul pertanyaan berikutnya. . . ., Lantas **Kuda mana yang kekuatannya paling tinggi??!!!** Untuk menjawab pertanyaan tersebut perlu dilakukan uj lanjut atau **Post Hoc test.**

Post Hoc Tests

Multiple Comparisons

Dependent Variable: KEKUATAN								
			Mean			95% Confid	ence Interval	
	(I) KUDA	(J) KUDA	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound	
Tukey HSD	kuda sumbawa	kuda eropa	60,70*	16,626	,003	19,48	101,92	
		kuda amerika	56,10*	16,626	,006	14,88	97,32	
	kuda eropa	kuda sumbawa	-60,70*	16,626	,003	-101,92	-19,48	
		kuda amerika	-4,60	16,626	,959	-45,82	36,62	
	kuda amerika	kuda sumbawa	-56,10*	16,626	,006	-97,32	-14,88	
		kuda eropa	4,60	16,626	,959	-36,62	45,82	
Bonferroni	kuda sumbawa	kuda eropa	60,70*	16,626	,003	18,26	103,14	
		kuda amerika	56,10*	16,626	,007	13,66	98,54	
	kuda eropa	kuda sumbawa	-60,70*	16,626	,003	-103,14	-18,26	
		kuda amerika	-4,60	16,626	1,000	-47 ,04	37,84	
	kuda amerika	kuda sumbawa	-56,10*	16,626	,007	-98,54	-13,66	
		kuda eropa	4,60	16,626	1,000	-37 ,84	47,04	
Tamhane	kuda sumbawa	kuda eropa	60,70*	17,949	,014	11,72	109,68	
		kuda amerika	56,10*	12,545	,001	22,99	89,21	
	kuda eropa	kuda sumbawa	-60,70*	17,949	,014	-109,68	-11,72	
		kuda amerika	-4,60	18,700	,993	-54,93	45,73	
	kuda amerika	kuda sumbawa	-56,10*	12,545	,001	-89,21	-22,99	
		kuda eropa	4,60	18,700	,993	-45,73	54,93	

*. The mean difference is significant at the .05 level.

INTERPRETASI

Tabel Multiple Comparisons

Pada kolom mean difference, rata-rata perbedaan kekuatan kuda adalah:

Sumbawa dikurangi Eropa = 60,70* (signifikan)

Sumbawa dikurangi Amerika = 56,10* (signifikan)

Eropa dikurangi Sumbawa = -60,70* (signifikan)

Eropa dikurangi Amerika = -4,60 (tidak signifikan)

Amerika dikurangi Sumbawa = -56,10* (signifikan)

Arti tanda (*) adalah bahwa perbedaan tersebut significant. Hal ini juga diperjelas dengan perbandingan probabilitas, jika probabilitas < 0,05 maka signifikan. Dari table dilihat bahwa perbedaan kekuatan kuda eropa dan amerika hanya 4,60 dan tidak signifikan (0,993 > 0,05).